added simple outlier detection

This commit is contained in:
tom.hempel
2025-09-24 17:35:06 +02:00
parent 4e6a6c999d
commit c332161a5e
2 changed files with 77 additions and 6 deletions

View File

@ -23,6 +23,34 @@ def read_signal_csv(csv_path: Path, value_column: str) -> pd.DataFrame:
return df return df
def clean_rr_ms(rr_df: pd.DataFrame, col: str = 'rr_ms', source_name: str | None = None) -> pd.DataFrame:
"""RR cleaning with simple thresholding + interpolation and reporting.
- Coerce to numeric; mark non-finite as NaN (count)
- Mark out-of-range [300, 2000] ms as NaN (count)
- Interpolate in time; ffill/bfill edges
- Print counts
"""
if rr_df is None or rr_df.empty or col not in rr_df.columns:
return rr_df
df = rr_df.copy()
df[col] = pd.to_numeric(df[col], errors='coerce')
nonfinite_mask = ~pd.notna(df[col])
range_mask = (df[col] < 300) | (df[col] > 2000)
flagged = nonfinite_mask | range_mask
df.loc[flagged, col] = np.nan
if isinstance(df.index, pd.DatetimeIndex):
df[col] = df[col].interpolate(method='time', limit_direction='both')
else:
df[col] = df[col].interpolate(limit_direction='both')
df[col] = df[col].ffill().bfill()
if source_name is None:
source_name = 'RR cleaning'
print(f"{source_name} - RR filter: nonfinite={int(nonfinite_mask.sum())}, out_of_range={int(range_mask.sum())}, total_flagged={int(flagged.sum())}")
return df
def read_marks(csv_path: Path) -> pd.Series: def read_marks(csv_path: Path) -> pd.Series:
if not csv_path.exists(): if not csv_path.exists():
return pd.Series([], dtype='datetime64[ns]') return pd.Series([], dtype='datetime64[ns]')
@ -288,9 +316,10 @@ def compute_and_plot_aligned_hr(recordings_root: Path, out_root: Path) -> None:
return return
Y = np.vstack(curves) Y = np.vstack(curves)
mean = np.nanmean(Y, axis=0)
std = np.nanstd(Y, axis=0)
n = np.sum(~np.isnan(Y), axis=0) n = np.sum(~np.isnan(Y), axis=0)
marr = np.ma.array(Y, mask=np.isnan(Y))
mean = marr.mean(axis=0).filled(np.nan)
std = marr.std(axis=0).filled(np.nan)
# Plot # Plot
fig, ax = plt.subplots(figsize=(12, 5)) fig, ax = plt.subplots(figsize=(12, 5))
@ -329,6 +358,7 @@ def compute_and_plot_aligned_rr(recordings_root: Path, out_root: Path) -> None:
if not rr_csv.exists() or not ts_csv.exists(): if not rr_csv.exists() or not ts_csv.exists():
continue continue
rr_df = read_signal_csv(rr_csv, 'rr_ms') rr_df = read_signal_csv(rr_csv, 'rr_ms')
rr_df = clean_rr_ms(rr_df, 'rr_ms', source_name=f'{rec_dir.name} (aligned RR)')
marks = read_marks(ts_csv) marks = read_marks(ts_csv)
if rr_df.empty or marks is None or len(marks) != 4: if rr_df.empty or marks is None or len(marks) != 4:
continue continue
@ -411,9 +441,10 @@ def compute_and_plot_aligned_rr(recordings_root: Path, out_root: Path) -> None:
return return
Y = np.vstack(curves) Y = np.vstack(curves)
mean = np.nanmean(Y, axis=0)
std = np.nanstd(Y, axis=0)
n = np.sum(~np.isnan(Y), axis=0) n = np.sum(~np.isnan(Y), axis=0)
marr = np.ma.array(Y, mask=np.isnan(Y))
mean = marr.mean(axis=0).filled(np.nan)
std = marr.std(axis=0).filled(np.nan)
fig, ax = plt.subplots(figsize=(12, 5)) fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(x_sec, mean, color='tab:green', label='Mean RR') ax.plot(x_sec, mean, color='tab:green', label='Mean RR')
@ -457,6 +488,7 @@ def compute_and_plot_aligned_rmssd(recordings_root: Path, out_root: Path, window
if not rr_csv.exists() or not ts_csv.exists(): if not rr_csv.exists() or not ts_csv.exists():
continue continue
rr_df = read_signal_csv(rr_csv, 'rr_ms') rr_df = read_signal_csv(rr_csv, 'rr_ms')
rr_df = clean_rr_ms(rr_df, 'rr_ms', source_name=f'{rec_dir.name} (aligned RMSSD)')
marks = read_marks(ts_csv) marks = read_marks(ts_csv)
if rr_df.empty or marks is None or len(marks) != 4: if rr_df.empty or marks is None or len(marks) != 4:
continue continue
@ -545,9 +577,10 @@ def compute_and_plot_aligned_rmssd(recordings_root: Path, out_root: Path, window
return return
Y = np.vstack(curves) Y = np.vstack(curves)
mean = np.nanmean(Y, axis=0)
std = np.nanstd(Y, axis=0)
n = np.sum(~np.isnan(Y), axis=0) n = np.sum(~np.isnan(Y), axis=0)
marr = np.ma.array(Y, mask=np.isnan(Y))
mean = marr.mean(axis=0).filled(np.nan)
std = marr.std(axis=0).filled(np.nan)
fig, ax = plt.subplots(figsize=(12, 5)) fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(x_sec, mean, color='tab:red', label=f'Mean RMSSD ({window_seconds}s window)') ax.plot(x_sec, mean, color='tab:red', label=f'Mean RMSSD ({window_seconds}s window)')
@ -578,6 +611,7 @@ def main() -> None:
rec_name = rec_dir.name rec_name = rec_dir.name
hr_df = read_signal_csv(rec_dir / 'hr.csv', 'hr') hr_df = read_signal_csv(rec_dir / 'hr.csv', 'hr')
rr_df = read_signal_csv(rec_dir / 'rr.csv', 'rr_ms') rr_df = read_signal_csv(rec_dir / 'rr.csv', 'rr_ms')
rr_df = clean_rr_ms(rr_df, 'rr_ms', source_name=f'{rec_name} (summary)')
marks = read_marks(rec_dir / 'timestamps.csv') marks = read_marks(rec_dir / 'timestamps.csv')
if marks is None or len(marks) != 4: if marks is None or len(marks) != 4:

View File

@ -77,6 +77,42 @@ def read_marks(csv_path: Path) -> pd.Series:
return ts return ts
def clean_rr_ms(rr_df: pd.DataFrame, col: str = 'rr_ms', source_name: str | None = None) -> pd.DataFrame:
"""Basic NN editing for RR in ms with interpolation and reporting.
Steps:
- Coerce to numeric and mark non-finite as NaN (count)
- Mark out-of-range [300, 2000] ms as NaN (count)
- Mark robust outliers via 15s rolling median/MAD (z > 3.5) as NaN (count)
- Time-based interpolation to fill flagged values (then ffill/bfill)
- Print counts summary
"""
if rr_df is None or rr_df.empty or col not in rr_df.columns:
return rr_df
df = rr_df.copy()
df[col] = pd.to_numeric(df[col], errors='coerce')
# Track flags (only threshold filtering per request)
nonfinite_mask = ~pd.notna(df[col])
range_mask = (df[col] < 300) | (df[col] > 2000)
# Combine flags: non-finite or out-of-range
flagged = nonfinite_mask | range_mask
# Set flagged to NaN for interpolation
df.loc[flagged, col] = np.nan
# Interpolate in time, then ffill/bfill for edges
if isinstance(df.index, pd.DatetimeIndex):
df[col] = df[col].interpolate(method='time', limit_direction='both')
else:
df[col] = df[col].interpolate(limit_direction='both')
df[col] = df[col].ffill().bfill()
# Reporting
if source_name is None:
source_name = 'RR cleaning'
print(f"{source_name} - RR filter: nonfinite={int(nonfinite_mask.sum())}, out_of_range={int(range_mask.sum())}, total_flagged={int(flagged.sum())}")
return df
def segment_bounds_from_marks(marks: pd.Series, start_ts: pd.Timestamp, end_ts: pd.Timestamp) -> list[tuple[pd.Timestamp, pd.Timestamp]]: def segment_bounds_from_marks(marks: pd.Series, start_ts: pd.Timestamp, end_ts: pd.Timestamp) -> list[tuple[pd.Timestamp, pd.Timestamp]]:
"""Create segments between consecutive marks, plus the final segment from last mark to end. """Create segments between consecutive marks, plus the final segment from last mark to end.
@ -242,6 +278,7 @@ def process_recording(rec_dir: Path, plots_root: Path) -> None:
hr_df = read_signal_csv(hr_csv, 'hr') hr_df = read_signal_csv(hr_csv, 'hr')
rr_df = read_signal_csv(rr_csv, 'rr_ms') rr_df = read_signal_csv(rr_csv, 'rr_ms')
rr_df = clean_rr_ms(rr_df, 'rr_ms')
marks = read_marks(ts_csv) marks = read_marks(ts_csv)
if hr_df.empty and rr_df.empty: if hr_df.empty and rr_df.empty: